
Algorithmic Intelligence

Bruno Buchberger

Conference “Symbolic Computation in Software Science”
Tokyo University of Science

August 28, 2024

buchberger.bruno@gmail.com

Copyright: Bruno Buchberger 2024

Overview:

Questions
Automated Programming and Symbolic

Computation
Automated Programming and Machine

Learning
A Bit of Philosophy (... maybe skip)
Conclusion

Some parts of this talk are contained in: B. Buchberger. Automated programming, symbolic

computation, machine learning : my personal view. Annals of Mathematics and Artificial
Intelligence (2023) 91 : 569–589.

2 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

Questions

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 3

Will “AI” outperform human mathematicians, programmers, ... in inventing, proving, applying

mathematics, software, ... ?

Will mathematicians, programmers, ... become jobless?

Is math, computer science, ... education obsolete?

Will “machines” ... outperform, control, exclude, get rid of, ... humans ...? ... Will AI program itself?

Will the planet finally “enjoy” a “human-free robot society” ...?

Are “machines” intelligent? Do they have consciousness?

4 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

Let’s discuss views, find answers, ...by just clarifying notions and their relations ...

Clarity is a firm basis for individual and societal action (in research, engineering, education,
politics, ...)

Notions: Consciousness, Reflexion, Intelligence, Mathematics, Models, Knowledge, Algo-
rithms, Machines, Computation, Software, Symbolics, Numerics, Programming, Automated

Reasoning, Automated Programming, Machine Learning, Artificial Intelligence, Algorithmic

Intelligence, ...

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 5

Automated Programming and

Symbolic Computation

6 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

Notation
We consider a (fixed) programming language (like C, Python, ...) and define:

 p[d] := the result (a data value) of applying program p to input data d.

We also consider a (fixed) logic language (like predicate logic, ...) and define:

 q[d] := the result (a truth value) of evaluating the formula q on input data d.

(With some generosity / sloppiness, ... most of the usual languages can be considered as both a

logic and a programming language

and I use the words “program” and “algorithm” interchangeably.)

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 7

Programming
Programming is the following task: given a problem, find a program that solves the problem.

Roughly, a problem can be specified by a formula q that explains, for all data d and e, whether or
not e is an admissible answer to the problem input (“problem instance”) d.

One often presents problems by the following wording: Given d, find e such that q[d, e].

A program p solves problem q iff

 for all d, q[d, p[d]]. (The “correctness statement” for program p w.r.t.
problem q.)

(Here, I only consider “explicit” problem specifications ... of the above form.)

Proving (arguing the truth ... of) the correctness statement is an integral part of problem solving.

8 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

Programming Needs “Intelligence”

Programming can be easy for some problems. Example: ...

Programming may need some well trained mind. Example: ...

For some problems, finding an algorithm was many years open but, finally an algorithm was

found. Example: ...

For some problems, finding an algorithm is still open. Example: ...

For some problems, finding a “good” algorithm is still open. Example: ...

For some problems, finding an algorithm was proved to be impossible. Example: ...

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 9

The World of Global Programming
By the work of thousands / millions of “programmers” (algorithm inventors, mathematicians) over
the past centuries, decades, years:

◦ We have thousands of algorithms for fundamental problems

(made available in well organized algorithm libraries).

◦ Millions / billions of complex programs for easy and more

and more difficult problems are composed from the funda-
mental algorithms (made available in “software systems” for
thousands of “applications”).

◦ These programs are executed on billions of computers (that
become faster, bigger, smaller, ... at an impressive rate).

◦ A growing flood of data (in / out) is produced.

◦ By the internet, these computers, the software systems, and

the data are globally interconnected forming kind of a

“global computer”.

◦ The global computer interconnects the users and becomes

the digital memory and the digital processing power of a

“global digital society”.

◦ The global society is the global programmer and the global
user of the global computer.

10 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

Programming Needs “Intelligence” (Let me call it
“Algorithmic Intelligence”)

“Algorithmic Intelligence”: More generally, “formal intelligence” (= “proving intelligence” + “algo-
rithmic intelligence”), “reasoning intelligence”, ...

Don’t tell this to outsiders:

“Programming” (solving problems by provably correct algorithms) is the most intelligent human

activity.

Why?

◦ Programming is the abstract form of all problem solving (= compos-
ing solutions for problems from available solutions for sub-
problems).

◦ Programming is the essence of mathematics and is essentially

mathematics.

(Don’t tell this to certain computer scientists. Don’t tell this to certain mathematicians.)

Programming needs “hot” (creative, intuitive, artistic, ...) and “cool” (impeccable, unaffected,
merciless ...) intelligence.

(Please tell this to politicians, artists, humanists, philosophers...)

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 11

Can Programming be Automated? Can "Intelligence"

be Automated?

This question is not new: Mathematics, in essence, is “reflexive” (= “meta”)!

Reflexiveness of mathematics: After struggling with solving a few (many) problems in a certain

class of problems individually (each by an extra method (algorithm)), one “looks over one’s own

shoulder” (one acts “self-reflexively”) and tries to find one method (algorithm) that solves all
problems in that class:

Instead of

 finding a program p1 for problemq1 such that, for all d, q1 [d, p1[d]],

 finding a program p2 for problemq2 such that, for all d, q2 [d, p2[d]],

 ...

 finding a program pm for problemqm such that, for all d, qm [d, pm[d]],

try to find a “general algorithm” G such that, for all q in an infinite class of problems (in which

q1, ..., qn are contained),

 for all d, q[d, G [q, d]].

Note: the general algorithm G has the problem q as an input parameter! (One also says: “G is on

the meta-level of q”.)

12 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

Reflexiveness: Already at the Beginning of Universal
Programming

Kurt Gödel, who introduced “universal programming” in 1930 (under a different name), already

proved in 1931 that going to meta-levels, ... has no upper bound!

Alan Turing, who introduced an abstract version of the universal computer in 1936, already proved

soon afterwards that there exists a “universal interpreter” U that explains the execution of all
other programs, i.e. U has the property that

 for all programs p and data p, U[p, d] = p[d].

Edgar F. Codd, in 1968 constructed a “cellular automaton” that was able to reproduce itself.

And, practically speaking, soon after the first technical realizations of universal computers (by H.
Aiken, K. Zuse and others) around 1940, people started to program compilers that work on pro-
grams (of a “higher level language”) and construct programs (of a “lower level language”).

An interesting exercise: Think about other examples of going to the meta-level in the early and

later days of computing.

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 13

Example for Going to the Meta-Level for Fundamental
Math Problems

Example: There existed various algorithms for canonical simplifiers and solvers for certain classes

of “multivariate polynomial equation systems”, e.g.

 Gauß’ algorithm for linear multivariate polynomial systems,

 Euclid’s algorithm for non-linear univariate polynomial systems.

Meta-level (generalization): Gröbner bases algorithm (BB 1965) for arbitrary non-linear multivari-
ate polynomial systems.

14 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

Example for Going to the Meta-Level for Fundamental
Math Problems

Example: There existed various algorithms for certain classes of “indefinite integration”, e.g.

 indefinite integration of rational functions by partial fraction decomposition,

 indefinite integration of certain “nice” integrands by heuristic application of certain basic

“integration rules” (e.g. substitution rule).

Meta-level (generalization): Risch’ algorithm (1968) for all “elementary integrands” based on

Liouville’s theory (19th century).

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 15

Examples for Going to the Meta-Level for Fundamental
Math Problems

Example: There existed various algorithms for certain classes of “symbolic summation”, e.g.

 indefinite summation of (roughly) rational functions by Gosper’s algorithm,

 indefinite summation of certain “nice” summands by heuristic application of certain basic

“summation rules” (see D. Knuth 1968).

Meta-level (generalization): An entire new arsenal of algorithms for the general class of hypergeo-
metric summands by ..., the JKU RISC-group led by P. Paule, now C. Schneider,..., and others,
since 1990.

16 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

Symbolic Computation: The Meta-Level of Fundamental
Math Problems

Going to the meta-level of finding algorithms for classes of fundamental math problems (as in the

above examples) is the first big part of what is called “symbolic computation”.

There is a second big branch of “symbolic computation”: The automation of programming in

general.

The automation of programming has two ingredients:

◦ (meta-) algorithms that construct programs p from given problem

specifications q,

◦ (meta-) algorithms that prove the correctness of formulae, in

particular the correctness statements of programs p for problems

q.

This branch of symbolic computation has various other names, like “automated reasoning”,
“automated theorem proving”, “computer-aided demonstration”, “computational logic” etc.

This is the notion of “Symbolic Computation” as introduced in the editorial of the Journal of
Symbolic Computation, BB 1985.

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 17

Numerical Computation: ... If the “Ideal Case” Is Not
Possible

Numerical computation is “the face of mathematics to the outside world”. Enormously important.

If “exact” algorithms for a given problem q are (theoretically or practically) not possible, numerical
computation has two approaches:

◦ formulate an “approximative version” q* of the problem with

some tolerance ϵ as an extra input parameter,

◦ in case a specification of q “in general terms” is not possible but
only finitely many input/output example pairs for q are known: we

have a “fitting problem” (in a very general sense). (All of “machine

learning” falls into this category, see below!)

18 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

The “Brain Power Constancy Hypothesis”
One might think: the higher the meta-level, the more “algorithmic intelligence” is needed to find

algorithms on that level.

However, after some more analysis, I tend to believe that the following principle holds:

Brain Power Constancy Hypothesis (“The Reflexion Principle”):

The human brain power for problem-solving (including “algorithmic intelligence”) did not
change over the past, say, ten thousands years and it will not drastically change over the

next ten thousand years.

The spectacular increase in the problem-solving capacity and the dramatic acceleration in

the increase is a consequence of applying the constant brain power in higher and higher
rounds of going from the object level to the meta-level. In one round, the objects of the

previous round become the actors on the next round. (I call this transition “reflexion”.)

I discuss the reflexion principle in more detail and more generality in the first part of my new book:
B.B. Science and Meditation: Creating the Future. Amazon.de. 2014. See also below: “A Bit of
Philosophy”.

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 19

The Misunderstanding about “Artificial Intelligence”
What seems to be “hard” in one round of going through the meta-levels, after invention of an

algorithm, becomes easy on the next level.

Therefore, in the early years of computing and programming, the algorithmic solution of the

above kind of mathematical problems was also considered to be part of what some people

wanted to call “artificial intelligence” or “machine intelligence”.

This terminology, however, was the source of a big misunderstanding: The “symbolic” algorithms

on the higher levels of problem solving, like any other algorithms, are the creation of human

intelligence. The machines on which they are executed are the same dull, completely unintelli-
gent, machines as ever!

The field is just “human algorithmic intelligence” (= the human intelligence for inventing algo-
rithms = the human intelligence for automating processes) on higher and higher levels!

20 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

The Race Between Human and Machine Intelligence
In other words:

◦ There is no race between human intelligence and machine

intelligence.

◦ There is - and will always be - a race between human intelli-
gence for solving each instance of a problem class extra and

human intelligence that tries to establish one algorithm for all
instances of this problem class!

In other words: Human intelligence on the higher level aims at making human intelligence on a

lower level superfluous!

In other words: It is the goal of mathematics (computer science, ...) to trivialize itself!

This simple insight is not clear even to some (“pure” and “applied”) mathematicians:

 - “I can do this and this ... integral faster than ‘the machine’!”

 - “I can do integrals ‘the machine’ cannot do!”
 - “I can translate a poem ‘the machine’ translated inappropriately”.

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 21

The First Approach to Automated Programming:
Symbolic Computation

The path from a problem specification q to a program p that solves q, is a transformation of
symbolic objects.

A huge research effort has been to automate or semi-automate this process. This is part of sym-
bolic computation.

I do not want to go into any details about this approach in this talk. I have given many talks on this

topic, in particular on my own approach by the “Lazy Thinking” method within the Theorema

system. Much of the SCSS papers were on this topic.

A recent survey paper on Automated Programming: Armando Solar-Lezama. A Survey of Program

Synthesis Techniques. MIT. 2023.

A survey on earlier research on this topic: D. Basin, Y. Deville, P. Flener, A. Hamfelt, J. F. Nilsson.
Synthesis of Programs in Computational Logic. In: M. Bruynooghe, K. K. Lau (eds.), Program

Development in Computational Logic, Lecture Notes in Computer Science, Vol. 3049, Springer,
2004, pp. 30-65.

A survey on very early research on this topic: B. Buchberger, Computer-Aided Algorithm Design

(German). In: Proceedings of the Spring School in Artificial Intelligence. Teisendorf, March 15-24,
1982, W. Bibel, J. H. Siekmann (ed.), Informatik-Fachberichte 59,Springer -Verlag Berlin - Heidel-
berg - New York, pp. 141-202. 1982.

22 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

An Example of a General Automatic Programming

Method: “Lazy Thinking” (BB 2002,...)

This method tries to be an “algorithm synthesis algorithm” (at least a “heuristics”) S, such that,

for all problems q in a quite large class of problems

 for all d, q[d, S[q] [d]] (*)
The method is such that, for all q, if it succeeds, the program S[q] is guaranteed to satisfy the

“correctness theorem” (*).

The method is implemented in the Theorema system (BB, W. Windsteiger et al . 1995 - ...)

For the following,
 I assume you know what an induction proof is

 and I assume you believe that induction proofs can be automatically generated (for a wide

variety of domains and properties).

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 23

Algorithm Synthesis by "Lazy Thinking"

"Lazy Thinking" method for algorithm synthesis =

 my personal advice to "humans" (or "computers") how to invent an algorithm for a given

problem q.

Overall Strategy of Lazy Thinking: (Automatically) reduce problem q to a couple of (hopefully

simpler) problems Q, ...

until ...

24 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

 Three Key Ideas for Automated Lazy Thinking

Given: A problem (specification) q. Find: An algorithm A for q.

♣ (Understand the problem "completely": Specification q

must be spelled out and "complete" knowledge must be

available on the notions that occur in the specification q.)

♣ Consider known fundamental ideas of how to structure

algorithms in terms of sub-algorithms ("algorithm

schemes A").
Try one scheme A after the other.

♣ For the chosen scheme A, try to prove (automatically): for
all d, q[d, A[d]]: From the failing proof construct (auto-
matically) specifications for the sub-algorithms B, ...
occurring in A that will turn the failing proof into a success-
ful proof.

Example of an Algorithm Scheme ("Divide and Conquer"):

A[d] =
S[d] ⇐ isBasic[d]
M[A[L[d]], A[R[d]]] ⇐ otherwise

A is the unknown algorithm.

S, M, L, R are unknown sub-algorithms.

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 25

Example: Synthesis of Merge-Sort [BB et al. 2003]

Problem: Synthesize algorithm "sorted" such that

 for all d, isSortedVersion[d, sorted[d]] .

("Correctness Theorem")

Knowledge on the Problem:

isSortedVersionOf[list1_, list2_] :=
isSorted[list2] ∧ isPermutation[list1, list2]

isSorted[list_] := forAll[{i, length[list] - 1}, list〚i〛 ≤ list〚i + 1〛]

...

etc. (approx. 20 formulae, see notebook of proofs in the Appendix.)

26 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

Now We Take, for Example, the Algorithm Scheme

“Divide and Conquer”

"Divide and Conquer":

A[d] =
S[d] ⇐ isBasic[d]
M[A[L[d]], A[R[d]]] ⇐ otherwise

A is the unknown algorithm.

S, M, L, R are unknown sub-algorithms.

We now start an automated induction proof of the correctness theorem

 for all d, q[d, A[d]]

This proof will fail because nothing is know about the sub-algorithms S, M, L, R .

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 27

Automated Invention of Sufficient Specifications for the

Subalgorithms , from a Failing Proof
“Sufficient” specifications: sufficient for turning the failing proof into a successful proof!

A simple (but amazingly powerful) rule (m ... an unknown subalgorithm):

Collect the temporary assumptions T[x0, ... A [...], ...]
and the temporary goals G[x0, ...m [A [...]]]

and produce the specification

∀
X, ..., Y, ...

TX, ... Y, ... ⟹

GX, ... m Y .

Details: see papers [BB 2002, ...] and example (in Appendix 1).

This rule is the essence of my Lazy Thinking methods.

28 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

The Result of Applying Lazy Thinking in the Sorting

Example
Lazy Thinking, automatically (in approx. 1 minute on a laptop using the Theorema system), finds

the following specifications for the sub-algorithms that provenly guarantee the correctness of the

above algorithm (scheme):

∀
x
(isBasic[x] S[x] = x)

∀
y,z

isSorted[y]
isSorted[z]

isSorted[M[y, z]]
M[y, z] ≈ (y ≍ z)

∀
x
(L[x] ≍ R[x] ≈ x)

Note: the specifications generated are not only sufficient but natural ! They specify merge algo-
rithms M and pairing algorithms L and R.

Now, what did we get automatically? A problem reduction ! All details of the intermediate steps:
Appendix 1.

Now, we either have suitable M, L, R in our algorithm library, or we can apply the Lazy Thinking

principle again until we arrive at basic algorithms in our library. (Library: Algorithms with there

specifications and, maybe, other knowledge on the algorithms.)

Thus, by the Lazy Thinking Method, entire hierarchies of provenly correct algorithms can be

generated in arbitrary domains.

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 29

How Far Can We Go With the "Lazy Thinking" Method ?

Can we automatically synthesize algorithms for non-trivial problems?

Example of a non-trivial (?) problem: construction of Gröbner bases (for non-linear multivariate

polynomial systems).

"Non-trivial" part of the invention: The invention of the notion of S-polynomial and the characteri-
zation of Gröbner-bases by finitely many S-polynomial checks.

With the "Lazy Thinking" method, it is possible to invent the essential idea of my (age 23) Gröbner
bases algorithm (1965) fully automatically. (Details: [BB 2005 (age 63), Craciun 2008]) and

Appendix 2.)

Cum grano salis: I managed to create an avatar of my mathematical self.

30 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

Automated Programming and

Machine Learning

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 31

A Completely Different Approach to Automatic

Programming (Algorithm Synthesis): “Machine Learning”

Recall: An algorithm synthesis algorithm S for a class of problems is an algorithm that, for all

problems q the class, satisfies

 for all d, q[d, S[q] [d]].

However, there is a huge class of practically important problems q, for which no general specifica-
tion can be given. Rather, the problem is only “specified by examples”, i.e. we have

◦ a number of examples of “input / output” pairs

(d1, e1), ..., (dn, en) for which

q [d1, e1], ..., q[dn, en] holds.

and an “oracle” (typically the “user” or “a physical system”) that

◦ for any given d and e, can decide (or just “apodictically”

determines) whether or not q[d, e] holds.

For such a problems q, can one still find an algorithm, i.e. a p such that, for all d, q[d, p[d]]?

For an entire class of such a problems q, can one still find algorithm synthesis algorithm, i.e. an

algorithm S such that, for all problems q in the class,

 for all d, q[d, S[q] [d]].

32 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

Can One Find an Algorithm for a Problem Specified by

Examples?
Answer: In principle “no”. Of course, one can give an algorithm p (e.g. “table-look/up”) that gives

output ei for inputdi, for all i = 1, .., n. However, how can we be sure that q[d, p[d]] will also be

satisfied for all other d?

Only under some additional assumptions, one can find a suitable algorithm:

◦ One may know or “want to believe” that the algorithm

should have the simple form of a linear function or a polyno-
mial function or a series or ... (which can be considered as

“algorithm schemata”).

◦ One may be satisfied with the result that the answers of the

algorithm give the output not exactly but up to some

“tolerance”.

◦ One may be satisfied with the result that the answers of the

algorithm give a tolerable output only with some probability.

In this form, for many classes of problems, many “algorithm schemata” and many notions of
“tolerance” finding algorithms (even automatically) is an old and rich area of mathematics with

many different variants: interpolation, extrapolation, regression, fitting, polynomial approxima-
tion, series expansion (Taylor, Fourier, Walsh, ...) etc.

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 33

Example of a Problem “Specified by Examples”
An algorithm p should be found that produces the output values 1, 4, 2, 1, 3, 5, 8, 5 for the input
values 1, 1.5, 2, 2.5, 3, 4, 5, 6.

Additional requirement: Between the given points the algorithm should be a polynomial of maxi-
mum degree 3 and, at the given points, the partial curves should "fit" (and the transition between

the curve pieces should be “smooth”).

Algorithms that synthesize an algorithm for all problems of this type, are well known (and are

examples of what is called “numerical computation”). Here is an implementation of such a

method, called ‘Interpolation’ in Mathematica:

I n [] : = p = Interpolation[{{1, 1}, {1.5, 4}, {2, 2}, {2.5, 1},
{3, 3}, {4, 5}, {5, 8}, {6, 5}}, InterpolationOrder 4];

InterpolatingFunction Domain: {{1, 6 }}
Output: scalar

InterpolatingFunction : Input expression InterpolatingFunction [{{1, 6 }}, <>] contains insufficient information

to interpret the result.

I n [] : = Plot[p[x], {x, 1, 6}]
Ou t [] =

2 3 4 5 6

2

4

6

8

34 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

Interpolation: What Happens Inside?

I n [] : = p = Interpolation[{{1, 1}, {1.5, 4}, {2, 2}, {2.5, 1},
{3, 3}, {4, 5}, {5, 8}, {6, 5}}, InterpolationOrder 3];

InterpolatingFunction Domain: {{1, 6 }}
Output: scalar

InterpolatingFunction : Input expression InterpolatingFunction [{{1, 6 }}, <>] contains insufficient information

to interpret the result.

I n [] : = Plot[p[x], {x, 1, 6}]
Ou t [] =

2 3 4 5 6

2

4

6

8

10

12

14

Note that ‘Interpolation’ is an algorithm synthesis algorithm: It takes a problem (specified by

finitely many input / output pairs) as an input and produces an algorithm for “solving” the

problem.

In more detail (in case InterpolationOrder -> 3): ‘Interpolation’ proceeds by setting on the curves

between points , as a (cubic, ...) polynomial ci3 x3 + ci2 x2 + ci1 x + ci0 (i = 1,...,5) and

determining then the “coefficients”

ci0, ci1, ci2, ci3 such that the conditions
(evaluation to the given outputs at the given inputs and fitting conditions) are satisfied.

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 35

More Challenging Example of a Problem “Specified by

Examples”
Problem (a variant of the “relation extraction problem”): Given a phrase (in English), decide

whether or not the phrase contains a part that expresses that “somebody cooperates with some-
body else” and, if the answer is “yes” provide the sub-phrases that describe the two “somebodies”.

Why is it difficult / impossible to give a complete general specification of this problem?

(For most problems on natural language texts referring to “semantics” it is difficult / impossible to

give a complete general specification. Why?)

However, “an oracle” (the community of English native speakers) can give lots of examples of
input and corresponding output for this problem and can also decide whether a certain sentence

expresses cooperation between certain people:

In: “Ann and Peter work together”. Out: “yes”, “Ann”,
“Peter”.
In: “They sat in different rooms”. Out: “no”. (Coudn’t
it be “yes”?)
In: “During the operation, the firefighters exchanged helpful
information by mobile.” Out: “yes”, “the firefighters”.
In: “He uses to spend a lot of time watching TV.” Out:
“no”.
...

How many examples of in / out would a person, who does not know the meaning of “cooperate”,
need to get the meaning in the sense that he would be able to produce the correct answer for any

of potentially infinitely many input phrases?

We want an algorithm that generates an algorithm for all such problems! Does interpolation work

(after some numerical encoding of texts)?

36 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

A Different View on Interpolation: The “Learning”

Perspective
A different way of looking at processes like interpolation (in fact, only a different wording for this

process):

◦ We have certain “training data”:
{{1,1},{1.5,4},{2,2},{2.5,1},{3,3},{4,5},{5,8},{6,5}}.

◦ In the “training phase”, the “learning method” ‘Interpolation’
takes a particular algorithm scheme (in this case a sequence of
cubic polynomials) as an “ansatz” with “unknown coefficients”.
The “learning method” “trains” the scheme by determining the

coefficients from the training data.
The scheme with the coefficients determined is called a

“trained model” (i.e. an algorithm for the problem given by the

input / output pairs).

◦ In the “application phase”, the “trained model” can be applied

to other input data:

I n [] : = p[5.67]
p[3.5602]
p[8.9]

Ou t [] =

7.08408

Ou t [] =

4.25735

InterpolatingFunction : Input value {8.9 } lies outside the range of data in the interpolating function.

Extrapolation will be used.
Ou t [] =

-102.286

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 37

When is the “Learning” Perspective Appropriate?
I n [] : = p = Interpolation[

{{1, 1}, {1.5, 4}, {2, 2}, {2.5, 1}, {3, 3}, {4, 5}, {5, 8}, {6, 5}}];

InterpolatingFunction Domain: {{1, 6 }}
Output: scalar

The perspective of the process as a “learning process”, of course, only makes sense if one consid-
ers the process in the context of “big data”: Assume, in a particular applications, as the result of
some measurements, one has one billion of input / output pairs and wants to “predict” the next 10

billion measurements. Then one could proceed, with the same mathematics, as follows:

◦ Partition the available input / output pairs in two sets: a

“training set” and a “test set”.

◦ Training phase on the training set as above. This yields a

trained model p.

◦ Test phase: Apply the model p to all inputs in the given input
/ output set and compare the outputs generated by the

model with the given outputs. If they are “tolerably” similar,
go to the application phase. If not, give up or use a much

bigger training set.

◦ Application phase : One can now apply the "model" p to

any of the (infinitely) many inputs d (in the input domain

considered) and obtain the output p[d]. What “relevance” /
“trust” one gives to p[d], depends on many factors that
should be made as explicit as possible in order not to draw

conclusions that will cause disappointment.

38 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

Is This Type of Learning “Intelligent”?
I n [] : = p = Interpolation[

{{1, 1}, {1.5, 4}, {2, 2}, {2.5, 1}, {3, 3}, {4, 5}, {5, 8}, {6, 5}}];

InterpolatingFunction Domain: {{1, 6 }}
Output: scalar

The “learning” terminology applied to the above mathematical process seduces people to think

that this process is “intelligent” since “learning” is something considered to be possible only for
intelligent creatures. Hence, some people call this approach “machine learning” (machines learn!)
or even “artificial intelligence”. However, this terminology does not really help. The process is as it
is and it does a wonderful job whether one sees the process itself or any of the trained models as

an “intelligent machine” or not.

One thing is clear, the process was invented by (intelligent) humans and, hence, is another exam-
ple of what I like to call "human algorithmic intelligence".

After this warm-up with some well-known mathematical algorithms, we are now prepared for an

analysis of current “machine learning” methods.

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 39

What is Different in Current “Machine Learning”

Methods?
As analyzed above, “machine learning” methods are algorithm synthesis algorithms for the class

of problems that are “specified by examples”.

(Here, we consider only “supervised learning”. Other variants of the learning approach can be

analyzed and viewed in a similar way.)

There a couple of methods summarized under the catch word “machine learning”: neural net-
works, support vector machines, Baysian statistics, evolutionary algorithms, Large Language

Models, ... Here, we only consider Neural Networks (NN). The other methods can be analyzed and

viewed in a similar way.

The Neural Networks approach is different from polynomial interpolation, regression, fitting,
etc.just by the type of algorithm schemata used as “ansatz” in the training phase.

40 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

The Ansatz in the Neural Network Approach
Instead, of linear terms or polynomials or ..., in the NN approach, the “ansatz” (algorithm scheme)
used in the training phase are nested “if-then-else” terms combined from terms of the form

x1w12 + x2w22 + ... + xp wp2 - b2 etc. (enclosed by “activation functions” σ for technical rea-
sons, in order to allow back-propagation of errors by differentiation ...).

Note that there is no “intelligence” in these terms! They are just another choice of terms that
contain some “unknown” coefficients (called “weights”) wij, These unknown coefficients may

be determined in an iterative training cycle in a similar way as described above for the simple

interpolation method. When it is decided to stop the training cycle, the nested if-then-else term

with concrete weight values (the “trained model”) is again an algorithm that produces output
values from input values. It can then be used in the test phase and, if sufficiently good, in the

application phase.

The invention of methods for determining the weights iteratively is again a product of human

mathematical (algorithmic) intelligence.(E.g. JKU researcher Sepp Hochreiter who invented the
“LSTM approach)”.

The particular form of these if-then-else terms with weights is motivated by the functioning of
biological neural networks consisting of neurons and axons (in animals and humans)”, for
example:

Drawing taken from: https : // en . wikipedia . org/wiki/Artificial_neural _network

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 41

The Practice of Neural Networks

Hundreds of “layers”. Hence, millions of unknown weights (“unknown coefficients”). Layers for
“coarseness” of learned features (“deep learning”). Some arrows in the layers backward (“recurren-
t” NN).

Millions of labeled items in the training set. “Labeling” is a big issue!

Rule of thumb: Twice as much “accuracy” may cause 500 times computational effort.

Enormous practical success in recent years: natural language translation, image recognition,
dialogues, ... (ushering in the “ChatGPT era”).

However, trained models do not “explain” anything about the structure behind the problem.
(Research field: “Explainable AI”.)

42 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

Are Neural Networks or the “Models” Produced

“Intelligent”?
Since the choice of these terms were motivated by biological neural networks, some people

believe / wish / think ... that these networks and the algorithms (“models”) produced by them

bear / mimic / grasp / “are” “intelligent”.

However, the algorithmic process based on these terms works (well or badly) independently of
whether or not one considers these networks and the models produced as intelligent or not.

Also, the above if-then-else terms describe “real” biological neural networks only on a very superfi-
cial way. In fact, what happens in real neural networks and, in particular, the human brain and in

the human “system” is much more complicated: Current biological research is far from “under-
standing the brain”. (However, biological research is much more advanced than, say, thirty years

ago and advances at high speed.)

The people who invented the NN approach to “machine learning” and refine it permanently,
though, are quite intelligent. Thus, NN-based “machine learning” is another example of “human

algorithmic intelligence”. In contrast, the machines (computers) that execute the approach are as

dull as ever ...

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 43

Going to the Meta-Meta-Level: Automatic Programming

by ChatGPT et al.
How can LLM be used for generating programs for problems specified in general terms?

By going to the “meta-meta-level”:

◦ LLM systems like ChatGPT generate models that take NL texts

(e.g. questions) as input and produce NL texts (e.g. answers to

the questions) as output.

◦ The models were trained on large sets of pairs of input texts and

output texts.

◦ Now, problem specifications are texts (mostly in NL) and

appropriate programs that solve the problems specified are

texts (in programming languages) often together with documen-
tation (texts in NL or some formal language).

◦ Huge sets of pairs (problem specification, program that solves

the problem) are available in program repositories like GitHub

etc.

◦ LLMs have been trained also on these repositories and, there-
fore, can be used for generating program (program proposals;
with documentation!) for problems specified in general terms!

This will change the world of programming dramatically and make many “low level programmers”

jobless. See, however, my conclusions!

44 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

Automatic Programming by ChatGPT: Example
Prompt to ChatGPT: “Given a set of appointments in a calendar and a new appointment, check

whether the new appointment collides with any of the appointments in the calendar. ...“

ChatGPT:

“Here is a solution in Python:

class Appointment:
 ...

def check_collision(appointments, new_appointment):
 for appointment in appointments:
 if appointment.start < new_appointment.end and appointment.end > new_appointmen-
t.start:
 return True
 return False

...

This solution creates an Appointment class to represent an appointment, with start, end,
and text as its attributes. It then defines the check_collision function which takes in a list of
appointments and a new_appointment and checks whether there is a collision by iterating

through the list of appointments and checking if the start or end time of any of the appoint-
ments fall within the start and end time of the new appointment. If a collision is detected,
the function returns True, otherwise it returns False.”

Automatic Programming by ChatGPT et al.
The answer is not only correct, it is also documented.

Note, however, that the explanation of the collision condition in the documentation is logically

wrong whereas the formulation of the condition in the program is correct!

The logical mistake in the documentation is exactly the one which I encountered in experiments

with human programmers!

Please compare this with the potential of quantifier elimination (a powerful symbolic computa-
tion method), which is able to start from the “common sense” explanation of the notion of colli-

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 45

sion (which involves a hidden existential quantifier) and, from there, produces the correct condi-
tion on the start and end times of the two appointments.

Sorry, no time and space for details! See: Buchberger, B . : Is ChatGPT Smarter Than Master’ s

Applicants?RISC Report Series 23 - 04, Research Institute for Symbolic Computation (RISC),
Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria (2023)

46 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

The Interaction of Symbolic Computation and Artificial
Intelligence

I use the following terminology:

“Artificial Intelligence” = “Symbolic Computation” (in the JSC sense) +

“Machine Learning”.

Machine Learning is the only “new” (300, 70, 10 years old) method within “Artificial Intelligence”.
Everything else was already done before (in symbolic or numeric computation).

Recall: Symbolic computation and machine learning are just mathematical methods whose

invention and improvement needs human “algorithmic intelligence” and whose application is

completely “unintelligent”, i.e.

“artificial intelligence” = human “algorithmic intelligence” + “artificial
silliness”.

The next step in “algorithmic intelligence” with enormous theoretical and practical potential:

symbolic computation in interaction with machine learning.

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 47

Symbolic Computation Plus Machine Learning: The Next
Level of Sophistication

Apply Machine Learning to problems specified in general terms (for which no algorithms

or only computationally complex algorithms are known):

Example: Learn a “model” for computing Gröbner bases from many

examples of input / outputs (see recent work by H. Kera et al.)

Example: Learn a “model” for the complexity of computing Gröbner
bases from many examples of input / outputs.

Integrate the basic algorithms of ML/NLP/LLM (Machine Learning, Natural Language Process-
ing, Large Language Models) into the algorithm library of mathematical software systems like

Mathematica, Maple, etc.:

Example: Rich new ML/NLP/LLM library in Mathematica’s latest
version 14.1.

Call symbolic computation algorithms from within the models generated by LLM:

Example: There is an option requesting the call of Mathematica

functions from within ChatGPT.

Take the models generated by ML/NLP/LLM as a guess and then try to verify the correctness of
the model by SC methods:

Very little work done in this area. I think this could be the way to go

to make “automated programming” practical.

Use SC methods inside AI algorithms and for the generation and verification of AI software: ?

How could all this be combined to come up with a new level of “intelligence” and reliability in

“Mathematical Knowledge Management” systems?

48 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

A Bit of Philosophy: Intelligence and

Consciousness

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 49

Interaction with Reality
We interact with a “reality” by iterating the triad step “observing - thinking - acting”. In short, let
me call this the “intellectual approach” to reality:

50 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

Problem Solving by Intelligence
We encounter and solve problems in realities by the “intellect”:

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 51

“Reflexion”
By “reflexion” evolution proceeds to higher and higher levels (e.g. in Vedic Philosophy: reactions

(Manas) ⟶ “free will” decisions (Buddhi)⟶ “I”-consciousness (Ahamkara)).

The result of “observing - thinking - acting” is also used for improving the methods of observing,
the methods of thinking, the methods of acting.

52 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

Reflexion Is the Nature of Intelligence
Reflexion leads to the development of “devices”.

Humans + devices ⟶ more and more efficient humans.

Reflexion is the intelligence of nature.

Reflexion is the nature of intelligence.

There is no upper bound to reflexion driven evolution.

Algorithmic intelligence is the embodiment of intelligence in humans in the past centuries.

AI, ML, LLM, ... just the most recent waves in this evolution. More and more waves will come in ever
faster steps.

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 53

Consciousness
“Intelligence” and “Consciousness” are used interchangeably and in many different nuances.

In Vedic philosophy (and my view): “Pure Consciousness” is the absence of Observing ⟶ Thinking

⟶ Acting.

What remains is the experience of “Consciousness is conscious of itself” (pure reflexion, state

achieved by “meditation”).

In this sense, “machines” cannot be “conscious”. “Machines” (algorithms) can be arbitrarily

powerful (“look intelligent”).

54 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

Conclusions

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 55

Mathematical (Algorithmic) Intelligence
Mathematics:

◦ Inventing and proving new knowledge (“theorems”) and

methods from available knowledge and methods by reason-
ing (thinking).

◦ The “mathematical principle”: Think once deeply about the

general case so that you do not have to think any more in

infinitely many instances!

◦ In other words: The goal of mathematics is automation, i.e. to

trivialize itself.

The three aspects of mathematics:

◦ Solving (providing methods for problems).

◦ Proving (theorems, e.g. correctness theorems for methods).

◦ Simplification (in particular “computation”; applying methods

to problem instances / “input”)

Mathematical Intelligence (including “algorithmic intelligence”):

◦ Solving and proving needs intelligence.

◦ Simplification should not need (much, any) intelligence.

56 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

Automated Programming, Meta, Reflexion
Algorithmic Mathematics:

◦ Provide methods (“algorithms”, “programs”) whose

application needs zero intelligence, i.e. can be executed by

an idiot / “the computer”.

◦ Programming (= providing algorithms for problems),
depending on the problem, may be easy, ..., extremely

difficult, ... provably impossible.

◦ The essence of mathematics: Go to the meta-level (“reflex-
ion”): provide algorithms that, for some class of problems,
generate algorithms from problem specifications automati-
cally (“automated programming”).

◦ The hierarchy of meta-levels has no upper bound. The

higher the level, the more human algorithmic intelligence

is needed. (? Maybe not, see the “Intelligence constancy

principle”).

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 57

“Artificial Intelligence”
◦ Symbolic computation: automated programming for problems that are specified in

general terms.

◦ Machine Learning: automated programming for problems that are specified only by

examples.

◦ Some (many, ...) people like to call both, Symbolic Computation and Machine Learning,
“Artificial Intelligence” (“Machine Intelligence”, ...).

◦ However, this terminology leads / led to a lot of misunderstandings:

- In both, SC and ML, the machines (computer) are dull as ever.

- The algorithms provided in SC and ML are the product of human algorithmic (mathemat
ical) intelligence.

- The dull computers with the programs established by intelligent SC and ML researchers

may look “intelligent” from the outside but they are the product of human intelligence.

- The fascinating algorithms invented throughout the history of algorithmic mathemat-
ics, in particular within the last decades, work fantastically independent of whether one

calls them “intelligent” or not.

- There is no race between intelligent machines and intelligent humans but, rather,
between humans working on higher and higher levels of human algorithmic intelligence.

58 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

Mathematics: Highest Intellectual Aspiration
Working in the field of algorithmics (symbolic computation, numerical computation, machine

learning, ...) is exciting:

◦ It needs the best minds (human algorithmic intelligence).

◦ The ultimate level in technical evolution can / should /
must be done by humans.

◦ It needs highest formal education (“mathematics”) to stay

on top of technical evolution.

◦ Technical evolution has high scientific, technological,
economical, societal, political, ... relevance.

◦ Preserving, extending the level of formal (mathematical)
education will be indispensable for the survival of human

society (and the planet).

◦ Is “survival” a sufficiently attractive goal ...?

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 59

Mathematics Is Not Sufficient for Happiness
Mathematical / formal / intellectual education alone is not sufficient for leading the next steps of
human evolution.

◦ Today, more than ever, the application of the results of
algorithmic human intelligence needs high ethical responsi-
bility.

◦ The ethical aspect must be taken up by the researchers

working in algorithmics and must not be left to people who

do not understand the basics of algorithmics!

◦ Each of us must find their answer / path / ... to lead a respon-
sible life in the technological age.

◦ The goal of evolution is “happiness for all beings”. How can

this be achieved?

◦ My personal answer: “Science” + “Meditation”, see my new

book (available at amazon.de, amazon.com):

60 Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb

THANK YOU!

You are welcome for questions and dis-
cussion by mail:

buchberger.bruno@gmail.com

Buchberger Algorithmic Intelligence SCSS Tokyo 2024 08 28.nb 61

